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ABSTRACT 
 
The nine accelerometer array sensor package is used 
extensively in injury biomechanics research to obtain 
the rotational acceleration time histories of a rigid 
body. It has been shown in the past to remain 
computationally stable while the alternative, the six 
accelerometer array, becomes unstable in the 
presence of small inaccuracies in the individually 
measured accelerations. The nine accelerometer array 
process achieves its stability by requiring the 
measurement of three rotational accelerations, thus 
eliminating the six accelerometer array’s dependency 
on having knowledge of the rigid body’s three 
rotational velocities at each instant in time.  The nine 
accelerometer array’s additional three measurements 
also provide other important benefits:  1. Identifying 
whether or not any one of the nine translational 
acceleration measurements is inconsistent with rigid 
body motion, 2. If an incorrect acceleration is found, 
determining what the actual time history should be 
for that case, 3. Use of optimization methodology to 
obtain the best possible solution for the rigid body 
motion.  This paper presents the derivation of an 
additional set of constraint equations that a given set 
of nine linear accelerations must satisfy to be 
consistent with rigid body motion, demonstrates how 
an inconsistent acceleration input is discovered, and 
describes the process by which the true time history 
of the acceleration is recovered. In addition, 
optimization methodology is introduced to obtain the 
best possible solution for a randomly distributed in-
plane accelerometer system when errors in 
measurements are artificially introduced. 
 
INTRODUCTION 

The Nine Accelerometer Array Package (NAAP) 
uses translational accelerations to describe the 
angular motion of a rigid body. It has been used 
extensively in injury biomechanics research to obtain 
human and dummy head 3D kinematics (Hardy et al., 
2001, 2007, Takhounts et al., 2003, 2008). This 
sensor package typically uses nine accelerometers 

placed in a 3-2-2-2 configuration (Figure 1) to track 
the motion of a rigid body (Padgaonkar et al., 1975). 
The advantage of this configuration was shown to be 
in the stability of the NAAP when compared to the 
six accelerometer array (Figure 2) which required the 
knowledge of rotational velocities at each instant of 
time. This stability advantage of the NAAP is 
achieved at the expense of measuring three additional 
translational accelerations (in Figure 1 the three 
additional accelerations are a2x, a3x, and  a3y).  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Nine accelerometer array configuration. 
 

 

 

 

 

 

 

 

Figure 2.  Six accelerometer array configuration. 
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It will be shown in this paper that these tree 
additional measurements are not independent and are 
subject to the rigid body constraints. To do so, first 
consider a general 3D motion of a rigid body (Figure 
3) about a fixed point that is the same as the motion 
of point B measured by the observer located at point 
A.
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Figure 3.  Rigid body subjected to a 3D general 
motion. 

This relative motion occurs about the instantaneous 
center of rotation and is defined by: 

vB/A  = ω × rB/A                      (1) 
 

and            aB/A  = α × rB/A  +  ω × (ω × rB/A ),        (2) 
 

where vB/A and aB/A  are the relative velocity and 
acceleration of point B with respect to point A, ω and  
α are rotational velocity and acceleration. For 
translating axes, the relative motions are related to 
absolute motions by vB = vA + vB/A and  aB = aA + aB/A, 
and the absolute velocity and acceleration of point B 
are determined from the following equations: 
 

vB  = vA  + ω × rB/A                  (3) 
 

aB = aA + α × rB/A  +  ω × (ω × rB/A ).        (4) 
 

If the vectors are defined as: aA = [aAx, aAy, aAz]T, aB = 
[aBx, aBy, aBz]T, α = [αx, αy, αz]T,        ω = [ωx, ωy, ωz]T, 
and rB/A = [rx, ry, rz]T, then equation 4 can be rewritten 
in the component form: 
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Equations 5 will be used extensively throughout the 
paper in deriving both – the closed form constraints 
equations for the NAAP and the optimization based 
solution for a randomly distributed in-plane 
accelerometer system. 

 

METHODOLOGY 
 
NAAP Constraints Equations 
 
Consider the 3-2-2-2 NAAP configuration illustrated 
in Figure 1 arranged within a rigid body. The 
accelerations of points 1, 2, and 3 with respect to 
point 0 can be expressed using equations 5.  For 
points 1 and 0 substitute 1 for B, 0 for A, rB/A = r1 = 
[rx, 0, 0]T , where rx is the distance between points 1 
and 0: 
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Similarly, for points 2 and 0, substitute 2 for B, 0 for 
A, rB/A = r2 = [0, ry, 0]T, where ry is the distance 
between points 2 and 0: 
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For points 3 and 0, substitute 3 for B, 0 for A, rB/A = r3 
= [0, 0, rz]T, where rz is the distance between points 3 
and 0: 
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From equations 7 and 8, αx is found to be:  
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Similarly, αy is found from equations 6 and 8: 
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and αz is found from equations 6 and 7: 
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By adding the paired equations 9, 10, and 11, the 
three angular accelerations αx, αy, and αz can be 
expressed as functions of the nine translational 
accelerations and the arm lengths, i.e.: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−
−

−
=

−
−

−
=

−
−

−
=

y

xx

x

yy
z

x

zz

z

xx
y

z

yy

y

zz
x

r
aa

r
aa

r
aa

r
aa

r
aa

r
aa

22

22

22

0201

0103

0302

α

α

α
             (12) 

 
Equations 12 are given in Padgaonkar et al. (1975), 
and currently serve as the basis for derivation of 
angular motion of a rigid body from a set of nine 
translational accelerations.   Translational 
accelerations, as shown in equations 12, are usually 
functions of time.  Therefore, angular velocities of 
the rigid body could be obtained by simply 
integrating equations 12 with respect to time: 
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However, by subtracting the paired equations 9, 10, 
and 11 from each other, another set of equations can 
be found: 
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To fully describe a general 3D motion of a rigid body 
in space and time all nine equations 12 – 14 must be 
satisfied. This implies that nine measured 
acceleration in a NAAP configuration are not 
independent functions of time, but rather are bound 
by the additional set of equations (14). Let’s call 
these equations – rigid body constraint equations. 
  
To illustrate this point, consider a simple example of 
pure rotation of a rigid body where:   

 
a0x(t) = a0y(t) = a0z(t) = 0,                  (15) 

 
and the remaining six accelerations are identical 
functions of time: 
 
a1y(t) = a1z(t) = a2x(t) = a2z(t) = a3x(t) = a3y(t) = t.  (16) 

 
Then, equations (12) become: 
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Integrating these equations (17) with respect to time 
gives the following angular velocities: 
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Using equations 18, the products of the angular 
velocities are found to be: 
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However, substituting equations 15 and 16 into 14 
directly yields another relationship for the products of 
the angular velocities: 
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Comparing equations 19 and 20 and noticing their 
inequality it can be conclude that the conditions 12, 
13, and 14 cannot be satisfied simultaneously if nine 
translational accelerations are chosen in the arbitrary 
form of 15 and 16.  In other words, in order to satisfy 
equations 12, 13, and 14, the nine translational 
accelerations cannot be arbitrary functions of time.  
 
Closed Form Solutions for an Erroneous Channel 
in NAAP 
 
Suppose it is known that one of the accelerations in 
Figure 1, e.g. a1y(t), a1z(t), a2x(t), a2z(t), a3x(t), or a3y(t) 
is not measured properly or missing. Assume first for 
the sake of simplicity that the accelerations at point 0 
a0x(t), a0y(t), and a0z(t) are measured properly. To 
identify and correct the improperly measured trace 
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equations 12 – 14 will be used. From the first set of 
equations (14) the acceleration trace a2z(t) can be 
expressed as: 
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Using equations 13 for ωy(t) and ωz(t) and equations 
12 for αy(t) and αz(t), and substituting them into the 
equation above for a2z(t) (21), we get: 
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In a functional form the above equation can be 
rewritten: 
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It should be observed that the acceleration trace a2z(t) 
is a function of all the other eight acceleration traces 
in the array and the distances rx, ry, and rz.  This 
means that if acceleration trace a2z(t) was measured 
incorrectly, but all the rest traces were correct, the 
correct a2z(t) can be calculated using equation 22.   
Similarly, for the rest accelerations the relationship 
will be: 
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Each one of the six computed acceleration traces (22 
through 27) in the nine accelerometer array can be 
compared with the corresponding originally 
measured acceleration trace.  If one of the computed 
traces is not coincident with that originally measured, 
then the originally measured acceleration trace 
contains an error, and it should be replaced with the 
computed one.  If more than one of the computed 
traces is not coincident with the corresponding 
originally measured traces, then the error could be in 
one of the three accelerations [a0x(t), a0y(t), or a0z(t)], 
or may be due to more than one of the acceleration 
traces (or arm lengths) being measured improperly.    
To check for an incorrect trace, first let’s derive 
additional equations for the three acceleration traces 
at point 0: a0x(t), a0y(t), and a0z(t).    From the second 
equation of set 14 and by using relations 12 and 13, 
a0x(t) can be expressed as: 
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Similarly, from the third equation of set 14: 
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If equations 28a and 28b yield the same result, then 
all nine traces are self-consistent and no further 
investigation is required.  However, if these equations 
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don’t yield the same result, then the acceleration trace 
a0x(t) should be expressed as a function of the 
remaining eight acceleration traces.  One of the 
possible ways to accomplish this is to subtract 
equation 28b from 28a and solve the newly obtained 
equation for the velocity : ∫

t
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 (29) 
The equation above allows for the calculation of the 
acceleration a0x(t) when the other eight accelerations 
in the nine accelerometer array are known.   
Similarly for the acceleration trace a0y(t), from the 
first equation of set 14: 
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And by following the previous method, from the third 
equation of set 14: 
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By subtracting 30b from 30a: 
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(31) 
Again, for the acceleration trace a0z(t), from the first 
equation of set 14 we have: 
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 (32a) 
and from the second equation of set 14: 
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 (32b) 
By subtracting 32b from 32a:  
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 (33)  
 
The derived above equations 22 through 27, 29, 31, 
and 33 give the closed form solution for each 
acceleration trace in a NAAP configuration (Figure 
1) as a function of the rest eight traces in the array, 
thus allowing for correction/calculation of any 
inaccurate/missing acceleration trace. An example in 
the Results section illustrates the use of these 
equations. It should be noted, however, that the 
closed form solutions above are given under the 
assumption of one inaccurate trace out of nine. If 
there are measuring errors in more than one trace 
then the optimization methodology similar to the one 
presented below should be utilized. 
 
Optimization Methodology for an In-plane 
Accelerometer Array Configuration 
 
Consider a rigid body (Figure 4) with a set of 
translational accelerometers affixed to it at random 
locations with the known coordinates in a global 
coordinate system XYZ. For each point in Figure 4 
equations similar to equations 5 can be written and 
solved for angular accelerations ),,( zyx ααα . These 
angular accelerations are then served as the design 
variables so that the cumulative error given in 
equation 34 is minimized at each time step between 
the measured translational accelerations and the 
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corresponding computed translational accelerations 
derived from equations 5. 

  

 

 

 

 

 

 

 

 

Figure 4.  Rigid body with accelerometers affixed 
to it at random locations. 

The objective function (error function) minimized at 
each time step is defined as: 
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(34) 

where n is the number of points from which the 
acceleration data is obtained, m is the measured, and 
c is the computed data. This methodology allows for 
obtaining 3D angular accelerations that best satisfy 
all translational acceleration time histories at all 
given points. 

 

RESULTS 

Example of a Closed Form Solution 

This example first takes a consistent set of nine 
accelerations from one of the NHTSA conducted 
NCAP tests, calculates angular accelerations using 
only Padgaonkar equations (12), then inputs these 
angular accelerations into a rigid body finite element 
model of a human skull (Figure 5) that calculates 
translational accelerations at the locations similar to 
those used in NAAP, and then compares the model 
output with the original measured translational 
accelerations.   
Next, one of the acceleration traces from the initially 
consistent set of nine accelerations was modified in 
the manner shown in Figure 6 in which the signal 
was clipped in half of its original amplitude. The 
purpose of this was to see the effect of this clipping 
procedure on the computed translational accelerations 
output from the model (Figure 7) 
Figure 8 shows the results for the original and 
computed sets of accelerations confirming 

consistency of the original set, Figure 9 shows the 
results of all nine traces after one of them was 
clipped. 
 

 

X 

Y

Z 

Figure 5.  Rigid human finite element skull with 
accelerometer locations shown. 
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Figure 6.  An original and clipped acceleration 
traces. 
 

 
Figure 7.  An original (blue), clipped (green), and 
model output (magenta) acceleration traces. 
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Figure 8.  Consistent set of nine accelerations. 
 

It is clear from Figure 9 that by clipping one of the 
original traces, then calculating angular accelerations 
using equations 12, and applying them to the finite 
element model, yields results that are inconsistent 
with the original set of translational accelerations. 
Interestingly, as illustrated in Figure 9, almost all of 
the original traces were affected by clipping only one 
of them. This illustrates the point that was made 
previously using equations 15 through 20. 
The consistency/inconsistency of nine acceleration 
traces in NAAP can also be illustrated through the 
use of constraints equations (14). For a consistent set 
equations 14 will be satisfied, while opposite is true 
for an inconsistent set. 
Equations 14, however, along with the derived above 
equations 22 through 27, 29, 31, and 33 can be used 
to identify and correct the erroneous trace. The 
procedure for this identification and correction is as 
follows: 

1. Compute αx, αy, αz using original traces 
and Padgaonkar equations 12, 

2. Compute products of angular velocities 
ωxωy, ωxωz, ωyωz using rigid body 
constraint equations 14, 

3. Compute each translational acceleration 
time history as a function of the remaining 
eight accelerations and radius vectors using 
equations 22 through 27, 29, 31, and 33, 

4. Compare computed and original eight 
translational accelerations (excluding the 
one under consideration) and find their 
cumulative error using equation similar to 
34, 

5. When the cumulative error is very small, the 
erroneous trace is found and it should be 
substituted with it’s computed equivalent. 

When the described above procedure was applied to 
the set of nine acceleration traces with one of them 
clipped, the clipped trace was identified and 
substituted with its computed equivalent giving 
results similar to the one shown in Figure 8 with all 
the traces overlapping each other. 
 
Optimization Methodology Example 
 
Consider a small triangular plate with accelerometers 
mounted in the manner shown in Figure 10. The 
small size of the plate is chosen such that it fits into a 
mouthpiece of a boxer, football or hokey player.   
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Figure 9.  Inconsistent set of nine accelerations (magenta) as compared with the original consistent set (blue). 
 
Using the general equations 5, translational 
accelerations shown in Figure 10 can be expressed 
as: 
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(37) 
where αx, αy, αz are angular accelerations of the 
plate, ωx, ωy, ωz are angular velocities, and rx, ry, rz 
are distances between points 1, 2, and 3 in the 
directions X,Y, and Z respectively. 
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Figure 10.  Small triangular plate setup with nine 
accelerometers fixed at points 1, 2, and 3. 
 
Using numerical finite element model of the rigid 
triangular plate an arbitrary 3D motion was applied to 
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generate the nine consistent traces. Figure 11 shows 
comparison of the angular accelerations from the 
finite element model with those obtained using 
optimization (equations 35 – 37, and 34 as an 
objective function). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  Original versus optimized angular 
accelerations. 
 
Assume now that there is a 3% cross-axis sensitivity 
error for each tri-axial accelerometer located at points 
1, 2, and 3 in Figure 10. This error can be expressed 
as: 

iziyixix aaaa 03.003.0 ++=
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When the new (erroneous) accelerations (38) are used 
in place of the old traces obtained from finite element 
simulation and the optimization procedure, described 
above, applied to this new set of accelerations, the 
resulting angular accelerations are identical to those 
shown in Figure 11. 
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This procedure demonstrates the applicability of the 
optimization methodology to recover proper set of 
acceleration traces when some of the channels are 
contaminated with random errors. The closed form 
solution for this hypothetical situation is not currently 
available. 

Alpha-X-Opt
Alpha-X-Original

 
DISCUSSION 
 
This paper demonstrates some of the limitations in 
the use of NAAP when only Padgaonkar equations 
(12) are considered. In particular, if one or more of 
the accelerometers in the array are not measured 
properly, the resulting kinematics of a rigid body is 
substantially affected because these errors are present 
in the computed angular accelerations. To correct for 
these possible errors, two methods were derived in 
this paper and their use was demonstrated.  
The first method – the closed form solution - uses 
additional constraint equations (14) to express each 
accelerometer in the array as a function of the other 
eight. The computed and original translational 
accelerations can then be compared, erroneous 
acceleration identified, and replaced. This method is 
limited to the cases when one of the acceleration 
traces is incorrect. It was also demonstrated that nine 
accelerations in the NAAP are not independent of 
each other, but rather bound by the rigid body 
constraints. This is somewhat intuitive because a 
rigid body has six degrees of freedom and any 
additional measure beyond six must be governed by 
an additional constraint.  In the case of NAAP, three 
additional accelerations are governed by three 
additional constraints – equations 14. 
The second method – the optimization method – uses 
angular accelerations as design variables for the 
objective function set to minimize the 
differences/errors between the measured and 
computed translational accelerations. This method, 
although not as elegant as the first one, can be used 
when multiple channels of accelerations in NAAP or 
any other configuration are not measured properly. 
Both methods can be used by the biomechanical 
laboratories to analyze and gain confidence in the 
measures of angular kinematics of human or dummy 
heads.  
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CONCLUSIONS 
 
The paper presents two methodologies to analyze 
angular kinematics of a rigid body when an array of 
translational accelerometers is used as the motion 
sensing device. It was demonstrated that: 

• Nine accelerometer measures in NAAP are 
not independent, but rather constrained, 

• The constraint equations can be derived and 
used to identify and correct an erroneous 
acceleration trace using a closed form 
solution method, 

• The closed form solution method is limited 
to one erroneous accelerometer trace in the 
array, 

• Optimization methodology can be utilized to 
correct errors in multiple channels of 
translational accelerometers. 
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